Manufacturing Classification System: (MCS) Recent Developments & Publications

> <u>Neil Dawson, Pfizer</u> <u>Kendal Pitt, GSK</u> <u>Michael Leane, BMS</u>

Gavin Reynolds, AZ

MCS Working Group

13 Sept 2019

The Tableting Process

Excipient

Inside the black box

Same form – Different tableting characteristics?

APIs or excipients? determinants of performance

	API	Common excipient	
Size, properties	Small,	Large,	
	Hydrophobic	Hydrophilic	
Invented for	Curing maladies	Facilitating tableting	
Commercial experience	'Never seen in nature'	40+ years	

Tabletting Issues

Tablet Size

Drug Product	Dose Regimen	Trade Dress	Core Tablet Weight	Tablet Dimension
Truvada®	FTC 200 mg TDF 300 mg		1000 mg	L: 19.3 mm W: 8.7 mm T: 7.3 mm
Sustiva®	EFV 600 mg	SUSTIVA	1200 mg	L: 19.2 mm W: 9.7 mm T: 7.2 mm
Atripla	EFV 600 mg FTC 200 mg TDF 300 mg		1550 mg	L: 20.2 mm W: 10.6 mm T: 8.8 mm

'Difficult' API

"Good" API

Biopharmaceutics Classification System (BCS)

Development Classification System (DCS) Butler & Dressman (2010) provided an important advance on this as it discriminates particle size and dissolution rate

Amidon GL, Pharm. Res., 12 (3), 1995. - Guidance for industry, Waiver of In Vivo Bioavailability and Bioequivalence Studies for Immediate Release Solid Oral Dosage Forms Based on a Biopharmaceutics Classification System. August 2000, CDER/FDA.

JAMES M. BUTLER, and JENNIFER B. DRESSMAN Journal of Pharmaceutical Sciences, Vol. 99, 4940–4954 (2010) The Developability Classification System: Application of Biopharmaceutics Concepts to Formulation Development

MCS: Why have one?

- Borrowing from BCS, use properties of particles to form a new classification to aid drug product manufacturing.
- Defines the "right particles" and "best process".
- Assist in particle engineering to provide targets for API properties.
- Aid development and subsequent transfer to manufacturing.
- Provide a common understanding of risk.
- Fits with QbD principles. Potential of obtaining regulatory relief by demonstrating that the properties of the ingoing API and excipients are within established ranges for the process.

MCS: Initial discussions

APS Joint Focus Group Meeting

BCS to MCS: From the particle to drug product: Predictions from Material Science through to manufacturing

May 13th and 14th 2013, East Midlands Conference Centre, University of Nottingham, UK.

Mat Sci and PEFDM focus groups

MCS Based on Processing Route

Direct compression

Dry Granulation

Wet granulation

White Paper

Pharmaceutical Development and Technology

http://informahealthcare.com/phd ISSN: 1083-7450 (print), 1097-9867 (electronic)

Pharm Dev Technol, 2015; 20(1): 12–21 © 2015 Informa Healthcare USA, Inc. DOI: 10.3109/10837450.2014.954728 **informa** healthcare

REVIEW ARTICLE

A proposal for a drug product Manufacturing Classification System (MCS) for oral solid dosage forms

Michael Leane¹, Kendal Pitt², Gavin Reynolds³, and The Manufacturing Classification System (MCS) Working Group*

¹Bristol-Myers Squibb, Moreton, UK, ²GlaxoSmithKline, Ware, UK, and ³AstraZeneca, Macclesfield, UK

- Industry and academic collaboration
- International contributions
- Feedback questionnaire rolled out

What API properties are important when selecting or modifying materials to enable an efficient and robust pharmaceutical manufacturing process?

Data Mining

 Data generally proprietary and difficult to access in the public domain

Methodology for Data Mining

- Data collated from EPAR regulatory filings
 - European public assessment reports
 - EMA (European Medicines Agency)
 - Full scientific assessment reports of authorised medicines 1996 2017
 - 99 Capsule formulations
 - 354 Tablet formulations
- Data
 - Therapeutic class
 - Commercial name
 - Active pharmaceutical ingredient (API)
 - Range of dose and dosage strengths
 - Dosage form description
 - Manufacturing process description
 - Company responsible for batch release and Marketing Authorisation Holder
 - Date of issue of marketing authorisation valid in European Union

- Capsules (n=99)
 - Roughly equal split between WG and DC
 - Large number of 'OT' formulations

- Tablets (n=354)
 - WG most popular process choice
 - DC only slightly ahead of DG
 - Few 'OT' formulations

- DC/DE and DG almost 2x as likely for Category A than Category B
- WG and OT almost 2x as likely to be chosen for Category B compounds

- Higher proportion of DC at lower doses
- RC more likely for Category A
- Category A outnumbers Category B
- WG significant across all doses

- Higher proportion of DC at lower doses
- RC more likely for Category A
- Category B outnumbers Category A
- WG significant across all doses

- DC preferred for Category A and WG preferred for Category B
- RC more likely for Category A
- Category B outnumbers Category A
- WG chosen in 80% cases where dose > 100mg & Category B

A 'High level' MCS

- Building on the concepts of drug loading and API particle size
- Supported with data analysis of 'publically-available proxies'
- 'High level'
 - Clearly exceptions
 - However this may provide a useful first step in assessing potential manufacturing risk

Parallel Co-ordinates Charts

Acknowledgements

PHARMACEUTICAL DEVELOPMENT AND TECHNOLOGY https://doi.org/10.1080/10837450.2018.1534863

REVIEW ARTICLE

Check for updates

Manufacturing classification system in the real world: factors influencing manufacturing process choices for filed commercial oral solid dosage formulations, case studies from industry and considerations for continuous processing

Michael Leane^a (D), Kendal Pitt^b (D), Gavin K. Reynolds^c (D), Neil Dawson^d, Iris Ziegler^e, Aniko Szepes^f, Abina M. Crean^{g,h} (D), Rafaela Dall Agnolⁱ and The Manufacturing Classification System (MCS) Working Group^{*}

*The following individuals contributed to this paper as part of the MCS working group: Bianca Broegmann (Evonik Nutrition & Care GmbH, Darmstadt, Germany), Stuart T. Charlton (Bristol-Myers Squibb, Moreton, UK), Conrad Davies (Pfizer, Sandwich, UK), John Gamble (Bristol-Myers Squibb, Moreton, UK), Michael Gamlen (Gamlen Tabletting Ltd, Nottingham, UK), Wen-Kai Hsiao (Research Center Pharmaceutical Engineering, Graz, Austria), Yaroslav Z. Khimyak (University of East Anglia, Norwich, UK), Johannes Khinast (Research Center Pharmaceutical Engineering, Graz, Austria), Peter Kleinebudde (Heinrich-Heine University, Düsseldorf, Germany), Chris Moreton (Finnbrit Consulting, Waltham, MA, US), Mira Oswald (Merck KGaA, Darmstadt, Germany), Susanne Page (F. Hoffmann-La Roche Ltd, Basel, Switzerland), Amrit Paudel (Research Center Pharmaceutical Engineering, Graz, Austria), Ranjita Sahoo (Symrise AG, Hannover, Germany), Stephen Sheehan (Alkermes Pharma, Athlone, Ireland), Howard Stamato (Bristol-Myers Squibb, Bridgewater, NJ, US), Elaine Stone (Merlin Powder Characterisation, Loughborough, UK).

- APS
- APV
- FIP
- AAPS